Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and Temperature-Controlled Aging Treatment

Por um escritor misterioso
Last updated 21 janeiro 2025
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
WCA dependence on the number of laser shots ablated on the surface
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
PDF) Drag reduction effect of ultraviolet laser-fabricated
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
Synthesis of Sulfoximines by Copper-Catalyzed Oxidative Coupling
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
Bionic eco-friendly synergic anti-scaling Cu-Zn-CeO2 coating on
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
Schematic diagram shows flotation cell and adsorption of
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
a) Comparison of experimental results and theoretical predictions
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
Tong CHEN, Doctor of Engineering
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
Xiaoyun SUN, Xi'an Jiaotong University, Xi'an, XJTU
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
Wettability and Stability of Wetting States for the Surfaces with
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
Effect of side length on wettability and stability of the wetting

© 2014-2025 radioexcelente.pe. All rights reserved.